In this paper, we study the transferability of ImageNet spatial and Kinetics spatio-temporal representations to multi-label Movie Trailer Genre Classification (MTGC). In particular, we present an extensive evaluation of the transferability of ConvNet and Transformer models pretrained on ImageNet and Kinetics to Trailers12k, a new manually-curated movie trailer dataset composed of 12,000 videos labeled with 10 different genres and associated metadata. We analyze different aspects that can influence transferability, such as frame rate, input video extension, and spatio-temporal modeling. In order to reduce the spatio-temporal structure gap between ImageNet/Kinetics and Trailers12k, we propose Dual Image and Video Transformer Architecture (DIViTA), which performs shot detection so as to segment the trailer into highly correlated clips, providing a more cohesive input for pretrained backbones and improving transferability (a 1.83% increase for ImageNet and 3.75% for Kinetics). Our results demonstrate that representations learned on either ImageNet or Kinetics are comparatively transferable to Trailers12k. Moreover, both datasets provide complementary information that can be combined to improve classification performance (a 2.91% gain compared to the top single pretraining). Interestingly, using lightweight ConvNets as pretrained backbones resulted in only a 3.46% drop in classification performance compared with the top Transformer while requiring only 11.82% of its parameters and 0.81% of its FLOPS.


翻译:在本文中,我们研究了图像网空间和动因空间和动因时空表达方式向多标签电影拖车 Genre 分类(MTGC)的可转移性。特别是,我们广泛评价了ConvNet和变异器模型在图像网和动因12k上预先训练成Triilers12k的可转移性。 这是一个新的手工制作的电影拖车数据集,由12 000个视频组成,标记有10种不同类型和相关元数据。我们分析了可能影响可转移性的不同方面,例如框架率、输入的视频扩展以及空间-时空模型。为了缩小图像网/Kinetics和Trailers12k之间的空间-时代结构差距,我们提出了双层图像网和变异器模型(DIVITA)的可转移性能,该模型进行拍摄,以便将拖车分成高度相联的剪辑片,为受过预先训练的骨架提供更加一致的投入,改进的可转移性能(只有1.83%的图像网和3.75 %的递增) 我们的结果表明,无论是在图像网或Kiniteriter1上或Kiniter1 之间的结构模型都比较可转换为Supreal1,同时使用最接近的性能分析。此外的数据。此外,可以提供比较性能数据。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
31+阅读 · 2021年3月29日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员