Composed image retrieval searches for a target image based on a multi-modal user query comprised of a reference image and modification text describing the desired changes. Existing approaches to solving this challenging task learn a mapping from the (reference image, modification text)-pair to an image embedding that is then matched against a large image corpus. One area that has not yet been explored is the reverse direction, which asks the question, what reference image when modified as describe by the text would produce the given target image? In this work we propose a bi-directional training scheme that leverages such reversed queries and can be applied to existing composed image retrieval architectures. To encode the bi-directional query we prepend a learnable token to the modification text that designates the direction of the query and then finetune the parameters of the text embedding module. We make no other changes to the network architecture. Experiments on two standard datasets show that our novel approach achieves improved performance over a baseline BLIP-based model that itself already achieves state-of-the-art performance.


翻译:组合图像检索根据由参考图像和修改文本组成的多模式用户查询搜索目标图像。现有方法学习从(参考图像,修改文本)配对到图像嵌入的映射,然后将其与大型图像库进行匹配。尚未探索的一个领域是反向查询,询问如下问题:在描述的条件下,哪个参考图像会生成给定的目标图像?在这项工作中,我们提出了一种双向训练方案,利用这种反向查询,可以应用于现有的组合图像检索架构。为了编码双向查询,我们将一个可学习的标记放在修改文本之前,指定查询的方向,然后微调文本嵌入模块的参数。我们不对网络架构进行其他更改。在两个标准数据集上进行的实验表明,我们的新方法比基线BLIP模型实现了更好的性能,而BLIP模型本身已经实现了最先进的性能。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
专知会员服务
88+阅读 · 2021年6月29日
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
专知会员服务
88+阅读 · 2021年6月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员