What will happen when unsupervised learning meets diffusion models for real-world image deraining? To answer it, we propose RainDiffusion, the first unsupervised image deraining paradigm based on diffusion models. Beyond the traditional unsupervised wisdom of image deraining, RainDiffusion introduces stable training of unpaired real-world data instead of weakly adversarial training. RainDiffusion consists of two cooperative branches: Non-diffusive Translation Branch (NTB) and Diffusive Translation Branch (DTB). NTB exploits a cycle-consistent architecture to bypass the difficulty in unpaired training of standard diffusion models by generating initial clean/rainy image pairs. DTB leverages two conditional diffusion modules to progressively refine the desired output with initial image pairs and diffusive generative prior, to obtain a better generalization ability of deraining and rain generation. Rain-Diffusion is a non adversarial training paradigm, serving as a new standard bar for real-world image deraining. Extensive experiments confirm the superiority of our RainDiffusion over un/semi-supervised methods and show its competitive advantages over fully-supervised ones.
翻译:当无监督的学习达到真实世界图像脱线的传播模型时,会发生什么情况?为了回答这个问题,我们提议降雨扩散,这是第一个基于扩散模型的未经监督的图像脱线范式。除了传统的未经监督的图像脱线智慧外,雨水扩散还引入了稳定培训未受监督的现实世界数据,而不是薄弱的对抗性培训。雨水扩散由两个合作分支组成:非破坏性翻译处(NTB)和Diffusive翻译处(DTB)。NTB利用一个循环一致的结构,通过生成初始清洁/雨下图像配对,克服标准传播模型的未受控制培训的困难。DTB利用两个有条件的传播模块,逐步完善理想输出,先用初始成成成像和前硬化基因化的组合,以获得更好的脱线和雨水生成的普及能力。雨水扩散是一种非对抗性培训范式,作为现实世界图像脱线的新标准条。广泛的实验证实了我们雨化的优越性超过了完全不受监督的优势。