Search engines answer users' queries by listing relevant items (e.g. documents, songs, products, web pages, ...). These engines rely on algorithms that learn to rank items so as to present an ordered list maximizing the probability that it contains relevant item. The main challenge in the design of learning-to-rank algorithms stems from the fact that queries often have different meanings for different users. In absence of any contextual information about the query, one often has to adhere to the {\it diversity} principle, i.e., to return a list covering the various possible topics or meanings of the query. To formalize this learning-to-rank problem, we propose a natural model where (i) items are categorized into topics, (ii) users find items relevant only if they match the topic of their query, and (iii) the engine is not aware of the topic of an arriving query, nor of the frequency at which queries related to various topics arrive, nor of the topic-dependent click-through-rates of the items. For this problem, we devise LDR (Learning Diverse Rankings), an algorithm that efficiently learns the optimal list based on users' feedback only. We show that after $T$ queries, the regret of LDR scales as $O((N-L)\log(T))$ where $N$ is the number of all items. We further establish that this scaling cannot be improved, i.e., LDR is order optimal. Finally, using numerical experiments on both artificial and real-world data, we illustrate the superiority of LDR compared to existing learning-to-rank algorithms.
翻译:搜索引擎通过列出相关项目(例如文件、歌曲、产品、网页、......)来回答用户的询问。这些引擎依赖于学习排序项目的算法,以便提供一份定购清单,使项目包含相关项目的概率最大化。在设计学习到排行算法方面的主要挑战在于,查询往往对不同用户具有不同的含义。在没有任何关于查询的背景信息的情况下,人们往往必须坚持查询中的主题多样性的原则,即返回一份包含各种可能的专题或查询含义的清单。为了正式解决这个从学习到排序的问题,我们建议了一个自然模型,其中(一)项目分类为主题,(二)用户只有在符合其查询主题时才发现相关项目,以及(三)发动机不了解到达查询的主题,或者与不同主题有关的查询的频率,或者我们根据主题点击到项目的数量。(对于这一问题,我们设计了LDR,我们设计了LDR, 一种高效地将项目分类分类分类为(一美元), 以美元为最优的LRDR) 之后,我们只能用目前L- AL 的 RL 排序, 我们只能用目前 RL 的 Ralentalalalalalal 来显示目前 Rest 。