Given a permutation $\sigma$ on $n$ symbols $\{0, 1, \ldots, n-1\}$ and an integer $1 \leq m \leq n-1$, the $m$th contraction of $\sigma$ is the permutation $\sigma^{{CT}^m}$ on $n-m$ symbols obtained by deleting the symbols $n-1, n-2, \ldots, n-m$ from the cycle decomposition of $\sigma$. The Hamming distance $hd(\sigma,\tau)$ between two permutations $\sigma$ and $\tau$ is the number of symbols $x$ such that $\sigma(x) \neq \tau(x)$, and the Hamming distance of a non-empty set of permutations is the least Hamming distance among all pairs of distinct elements of the set. In this paper we identify how repeated contractions affect the Hamming distance between two permutations, and use it to obtain new lower bounds for the maximum possible size of a set of permutations on $q-1$ symbols, for certain prime powers $q$, having Hamming distance $q-5$, and for a set of permutations on $q - m$ symbols, for certain prime powers $q$ and $3 \leq m \leq 9$, having Hamming distance $q-1-2m$.
翻译:以美元符号$0, 1,\ldot, n-1 美元和整数$1 美元=leq m\leq n1美元计算, 美元缩缩为$gma美元, 美元缩为$gma美元=gma $sigma\\\\\\\\\\\\\m}美元, 美元符号的缩值为美元- 美元, 美元=1, n2,\ldots, 美元=mgma 美元, 美元=gma 美元, 美元=l1, 1美元=gma, 美元=gma, 美元=gma, 美元=gma, 美元=m=m=m=m=m=m=m=m=m=m=m=m=m=m美元, 平面图集中非空的宽距离是所有不同元素组合的最小距离。 在本文中,我们确定两次调整之间的重复收缩会如何影响mam 距离, $ $ $, 并使用它获得新的距离, $ $ $ q am mabrebrebreal dal dal resm resm resm resm resm resm resm resm resm resm resm resm resm resm resm resm resm resm max am resm resm imm seq a seq am am am am sem max am am am am se seg se seg am se se se se se se se se se se se se se se seg se se se se m se se se se se se se se se se se se se se se se se se se se se se se se se se se se se se se se am se se se se se am se m se se se se se se se se