Typical tasks in analyzing temporal graphs are single-source-all-destination (SSAD) temporal distance queries, which are, e.g., common during the computation of centrality measures in temporal social networks. An SSAD query starting at a vertex $v$ asks for the temporal distances, e.g., durations, earliest arrival times, or the number of hops, between $v$ and all other reachable vertices. We introduce a new index to speed up SSAD temporal distance queries. The indexing is based on the construction of $k$ subgraphs and a mapping from the vertices to the subgraphs. Each subgraph contains the temporal edges sufficient to answer queries starting from any vertex mapped to the subgraph. We answer a query starting at a vertex $v$ with a single pass over the edges of the subgraph. The new index supports dynamic updates, i.e., efficient insertion and deletion of temporal edges. We call our index Substream index and show that deciding if there exists a Substream index of a given size is NP-complete. We provide a greedy approximation that constructs an index at most $k/\delta$ times larger than an optimal index where $\delta$, with $1\leq\delta\leq k$, depends on the temporal and spatial structure of the graph. Moreover, we improve the running time of the approximation in three ways. First, we use a secondary index called Time Skip index. It speeds up the construction and queries by skipping edges that do not need to be considered. Next, we apply min-hashing to avoid costly union operations. Finally, we use parallelization to take the parallel processing capabilities of modern processors into account. Our extensive evaluation using real-world temporal networks shows the efficiency and effectiveness of our indices.
翻译:分析时间图的典型任务为单一源- 全部目的地( SSAD) 时间距离查询, 例如, 在计算时间社交网络的中心度测量时, 这是常见的 。 SSAD 查询始于顶点$v$的顶点要求时间距离, 例如, 持续时间、 最早到达时间或跳跃次数, 介于 $v$ 和所有其他可达的顶点之间 。 我们引入了一个新的索引, 以加快 SSAD 时间距离查询的速度。 索引基于 $k$ 的计算, 以及从 垂直点到 子座点。 每分点都包含一个时间边缘, 足以回答从 顶点 $vex 开始的任何顶点 $v$ 。 我们从一个垂直点开始, 美元 单次点支持动态更新, 即 高效插入和删除时间边缘 。 我们称为 指数 子流点指数, 并显示, 确定我们是否在某个特定大小的 底点的 底值 水平 水平 的 指数, 将 以 美元 美元 最贪婪 的 的 指数 值 值 指数 。