Exploratory cancer drug studies test multiple tumor cell lines against multiple candidate drugs. The goal in each paired (cell line, drug) experiment is to map out the dose-response curve of the cell line as the dose level of the drug increases. We propose Bayesian Tensor Filtering (BTF), a hierarchical Bayesian model for dose-response modeling in multi-sample, multi-treatment cancer drug studies. BTF uses low-dimensional embeddings to share statistical strength between similar drugs and similar cell lines. Structured shrinkage priors in BTF encourage smoothness in the dose-response curves while remaining adaptive to sharp jumps when the data call for it. We focus on a pair of cancer drug studies exhibiting a particular pathology in their experimental design, leading us to a non-conjugate monotone mixture-of-Gammas likelihood. To perform posterior inference, we develop a variant of the elliptical slice sampling algorithm for sampling from linearly-constrained multivariate normal priors with non-conjugate likelihoods. In benchmarks, BTF outperforms state-of-the-art methods for covariance regression and dynamic Poisson matrix factorization. On the two cancer drug studies, BTF outperforms the current standard approach in biology and reveals potential new biomarkers of drug sensitivity in cancer. Code is available at https://github.com/tansey/functionalmf.
翻译:探讨癌症药物研究的探索性癌症药物研究用多种候选药物测试多种肿瘤细胞线。 每种配对( 细胞线、 药物) 实验的目标是随着药物剂量水平的增加绘制细胞线的剂量反应曲线。 我们提议Bayesian Tensor 过滤( BTF), 这是一种等级分级的巴伊西亚模型, 用于在多种抽样、 多治疗癌症药物研究中进行剂量反应模型。 BTF 使用低维嵌入法来分享类似药物和类似细胞线的统计强度。 BTF 结构化的缩缩缩前针鼓励剂量反应曲线的平稳,同时在数据需要时仍然适应于急剧跳跃。 我们侧重于一对癌症药物研究的组合, 显示其实验设计中存在一种特殊的病理学, 导致我们形成一种不兼容的单项混合伽马哈姆斯生物潜力模型模型。 为了进行外表象学推断, 我们开发了一种变异精切切切的切算法, 用于从线状的多变异正常前的取样。 在基准中, BTFTF 超越了数据调的正常曲线的正常曲线上, 。 在基准中, BTFIBTFS- 和BTFIBS- streg- sty- smastry- smax- smamamax- smal- smax- smax- res- simmal- res- res- sty- res- res- resismal- res- sty- res- smalgymalvialvialction- 方法是两种方法。