The increasing popularity of spatial audio in applications such as teleconferencing, entertainment, and virtual reality has led to the recent developments of binaural reproduction methods. However, only a few of these methods are well-suited for wearable and mobile arrays, which typically consist of a small number of microphones. One such method is binaural signal matching (BSM), which has been shown to produce high-quality binaural signals for wearable arrays. However, BSM may be suboptimal in cases of high direct-to-reverberant ratio (DRR) as it is based on the diffuse sound field assumption. To overcome this limitation, previous studies incorporated sound-field models other than diffuse. However, performance may be sensitive to signal estimation errors. This paper aims to provide a systematic and comprehensive analysis of signal-dependent vs. signal-independent BSM, so that the benefits and limitations of the methods become clearer. Two signal-dependent BSM-based methods designed for high DRR scenarios that incorporate a sound field model composed of direct and reverberant components are investigated mathematically, using simulations, and finally validated by a listening test, and compared to the signal-independent BSM. The results show that signal-dependent BSM can significantly improve performance, in particular in the direction of the source, while presenting only a negligible degradation in other directions. Furthermore, when source direction estimation is inaccurate, performance of of the signal-dependent BSM degrade to equal that of the signal-independent BSM, presenting a desired robustness quality.
翻译:暂无翻译