A fundamental problem of science is designing optimal control policies that manipulate a given environment into producing a desired outcome. Control Physics-Informed Neural Networks simultaneously solve a given system state, and its respective optimal control, in a one-stage framework that conforms to physical laws of the system. Prior approaches use a two-stage framework that models and controls a system sequentially, whereas Control PINNs incorporates the required optimality conditions in its architecture and loss function. The success of Control PINNs is demonstrated by solving the following open-loop optimal control problems: (i) an analytical problem (ii) a one-dimensional heat equation, and (iii) a two-dimensional predator-prey problem.
翻译:科学的一个根本问题是设计最佳控制政策,将特定环境操纵成预期的结果。控制物理成形神经网络同时在符合系统物理法则的一阶段框架内解决特定系统状态及其各自的最佳控制。以前的做法采用两个阶段框架,即按顺序模式和控制系统,而控制 PINN 在其结构和损失功能中包含必要的最佳条件。控制 PINN 的成功表现在解决以下开放循环最佳控制问题:(一) 分析问题(二) 单维热方程式,和(三) 双维掠食者猎物问题。