Subsequence-based time series classification algorithms provide accurate and interpretable models, but training these models is extremely computation intensive. The asymptotic time complexity of subsequence-based algorithms remains a higher-order polynomial, because these algorithms are based on exhaustive search for highly discriminative subsequences. Pattern sampling has been proposed as an effective alternative to mitigate the pattern explosion phenomenon. Therefore, we employ pattern sampling to extract discriminative features from discretized time series data. A weighted trie is created based on the discretized time series data to sample highly discriminative patterns. These sampled patterns are used to identify the shapelets which are used to transform the time series classification problem into a feature-based classification problem. Finally, a classification model can be trained using any off-the-shelf algorithm. Creating a pattern sampler requires a small number of patterns to be evaluated compared to an exhaustive search as employed by previous approaches. Compared to previously proposed algorithms, our approach requires considerably less computational and memory resources. Experiments demonstrate how the proposed approach fares in terms of classification accuracy and runtime performance.


翻译:基于后序列的时间序列分类算法提供了准确和可解释的模型,但对这些模型的培训是极其密集的计算。基于子序列的算法没有时间的复杂性仍然是一个更高层次的多元性,因为这些算法的基础是对高度歧视的子序列序列进行彻底搜索。提出了模式抽样作为减轻模式爆炸现象的有效替代方法。因此,我们使用模式抽样从离散的时间序列数据中提取歧视特征。根据离散的时间序列数据创建了一个加权三角形,以样本高度歧视模式。这些抽样模式用来确定用来将时间序列分类问题转化为基于特征分类问题的形状块。最后,可以使用任何现成的算法对分类模型进行培训。创建模式取样器需要少数模式来评估,而与以往方法采用的详尽搜索相比,与以往使用的模式相比较,我们的方法需要大大减少计算和记忆资源。实验表明所提议的方法在分类准确性和运行时效方面有多远。

1
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员