How to extract as much learning signal from each trajectory data has been a key problem in reinforcement learning (RL), where sample inefficiency has posed serious challenges for practical applications. Recent works have shown that using expressive policy function approximators and conditioning on future trajectory information -- such as future states in hindsight experience replay or returns-to-go in Decision Transformer (DT) -- enables efficient learning of multi-task policies, where at times online RL is fully replaced by offline behavioral cloning, e.g. sequence modeling. We demonstrate that all these approaches are doing hindsight information matching (HIM) -- training policies that can output the rest of trajectory that matches some statistics of future state information. We present Generalized Decision Transformer (GDT) for solving any HIM problem, and show how different choices for the feature function and the anti-causal aggregator not only recover DT as a special case, but also lead to novel Categorical DT (CDT) and Bi-directional DT (BDT) for matching different statistics of the future. For evaluating CDT and BDT, we define offline multi-task state-marginal matching (SMM) and imitation learning (IL) as two generic HIM problems, propose a Wasserstein distance loss as a metric for both, and empirically study them on MuJoCo continuous control benchmarks. CDT, which simply replaces anti-causal summation with anti-causal binning in DT, enables the first effective offline multi-task SMM algorithm that generalizes well to unseen and even synthetic multi-modal state-feature distributions. BDT, which uses an anti-causal second transformer as the aggregator, can learn to model any statistics of the future and outperforms DT variants in offline multi-task IL. Our generalized formulations from HIM and GDT greatly expand the role of powerful sequence modeling architectures in modern RL.


翻译:如何从每个轨迹数据中提取如此多的学习信号一直是强化学习(RL)的一个关键问题,因为抽样低效率给实际应用带来了严重挑战。最近的工作表明,使用直观政策功能的匹配器和对未来轨迹信息进行调节 -- -- 如后视经验的未来状态重放或者在决定变换器(DT)中返回到轨道信息 -- -- 能够有效地学习多任务政策,有时在线RL会被离线行为克隆完全取代,例如,序列建模。我们表明,所有这些方法都在进行后视信息匹配(HIM) -- -- 能够输出与未来信息某些统计数据相匹配的剩余轨迹的培训政策。我们展示了通用决策变换器(GDT),并展示了功能功能和反致癌聚合器的不同选择,不仅将DT作为特例收回,而且将二亚离子变异变变变数据(CDT)和BIDD(BDT) 用于匹配未来不同的统计(HTTT和BDT),我们把IMS和MDM(S的远程变数变换为CD-L),我们定义了S-LMDMDDM(C-L) 和M-DMD)的多行变变变变换的模型。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
158+阅读 · 2020年1月16日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
25+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
3+阅读 · 2018年10月8日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员