Adaptive gradient methods have shown excellent performance for solving many machine learning problems. Although multiple adaptive methods were recently studied, they mainly focus on either empirical or theoretical aspects and also only work for specific problems by using specific adaptive learning rates. It is desired to design a universal framework for practical algorithms of adaptive gradients with theoretical guarantee to solve general problems. To fill this gap, we propose a faster and universal framework of adaptive gradients (i.e., SUPER-ADAM) by introducing a universal adaptive matrix that includes most existing adaptive gradient forms. Moreover, our framework can flexibly integrates the momentum and variance reduced techniques. In particular, our novel framework provides the convergence analysis support for adaptive gradient methods under the nonconvex setting. In theoretical analysis, we prove that our new algorithm can achieve the best known complexity of $\tilde{O}(\epsilon^{-3})$ for finding an $\epsilon$-stationary point of nonconvex optimization, which matches the lower bound for stochastic smooth nonconvex optimization. In numerical experiments, we employ various deep learning tasks to validate that our algorithm consistently outperforms the existing adaptive algorithms.
翻译:适应性梯度方法在解决许多机器学习问题方面表现良好。 尽管最近研究过多种适应性方法,但它们主要侧重于经验或理论方面,并且仅通过使用特定的适应性学习率来应对具体问题。 期望设计一个通用的适应性梯度实际算法框架, 并有理论保证解决一般问题。 为了填补这一空白, 我们建议一个快速和通用的适应性梯度框架( 即SUPER- ADAM), 引入一个包含大多数现有适应性梯度形式的通用适应性矩阵。 此外, 我们的框架可以灵活地整合动力和差异减少的技术。 特别是, 我们的新框架为非convex 设置下的适应性梯度方法提供了趋同性分析支持。 在理论分析中, 我们证明我们的新算法可以达到已知的最复杂的 $\ tilde{O} (\ exsilon ⁇ -3}) $, 用于寻找一个与现有适应性平坦x优化的低约束点, 。 在数字实验中, 我们运用了各种深层次的学习任务来验证我们的算法是否始终高于现有的适应性。