Distributed training is an effective way to accelerate the training process of large-scale deep learning models. However, the parameter exchange and synchronization of distributed stochastic gradient descent introduce a large amount of communication overhead. Gradient compression is an effective method to reduce communication overhead. In synchronization SGD compression methods, many Top-k sparsification based gradient compression methods have been proposed to reduce the communication. However, the centralized method based on the parameter servers has the single point of failure problem and limited scalability, while the decentralized method with global parameter exchanging may reduce the convergence rate of training. In contrast with Top-$k$ based methods, we proposed a gradient compression method with globe gradient vector sketching, which uses the Count-Sketch structure to store the gradients to reduce the loss of the accuracy in the training process, named global-sketching SGD (gs-SGD). The gs-SGD has better convergence efficiency on deep learning models and a communication complexity of O($\log d*\log P$), where $d$ is the number of model parameters and P is the number of workers. We conducted experiments on GPU clusters to verify that our method has better convergence efficiency than global Top-$k$ and Sketching-based methods. In addition, gs-SGD achieves 1.3-3.1x higher throughput compared with gTop-$k$, and 1.1-1.2x higher throughput compared with original Sketched-SGD.


翻译:分散培训是加快大规模深层学习模式培训进程的有效途径,然而,分布式随机梯度梯度下降的参数交换和同步化引入了大量通信管理费。渐进压缩是减少通信管理费的有效方法。在同步 SGD压缩方法中,提出了许多基于顶点的斜度压缩方法以减少通信量。然而,基于参数服务器的中央方法有一个失败问题和可缩放性的单一点,而全球参数交换的分散化方法可能会降低培训的趋同率。与以最高至美元为基础的方法相比,我们提出了一种使用全球梯度矢量草图绘制的梯度压缩法,该方法使用计数-标准结构储存梯度,以减少培训过程中的准确性损失,称为全球刀切SGD(g-SGD)。GSD在深层学习模型和以O($\log d ⁇ plus P$为基础的通信复杂性方面,以美元为基础的模式参数和P值是以美元为基础的工人数量。我们用GPO-SG3.1的原始组合比GP-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-S-S-S-S-S-S-S-S-G-G-S-G-G-G-G-G-G-G-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-G-G-G-G-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-G-G-S-S-G-G-G-S-S-G-G-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员