The performance of deep neural networks crucially depends on good hyperparameter configurations. Bayesian optimization is a powerful framework for optimizing the hyperparameters of DNNs. These methods need sufficient evaluation data to approximate and minimize the validation error function of hyperparameters. However, the expensive evaluation cost of DNNs leads to very few evaluation data within a limited time, which greatly reduces the efficiency of Bayesian optimization. Besides, the previous researches focus on using the complete evaluation data to conduct Bayesian optimization, and ignore the intermediate evaluation data generated by early stopping methods. To alleviate the insufficient evaluation data problem, we propose a fast hyperparameter optimization method, HOIST, that utilizes both the complete and intermediate evaluation data to accelerate the hyperparameter optimization of DNNs. Specifically, we train multiple basic surrogates to gather information from the mixed evaluation data, and then combine all basic surrogates using weighted bagging to provide an accurate ensemble surrogate. Our empirical studies show that HOIST outperforms the state-of-the-art approaches on a wide range of DNNs, including feed forward neural networks, convolutional neural networks, recurrent neural networks, and variational autoencoder.
翻译:深海神经网络的性能关键地取决于良好的超光谱配置。 贝氏优化是优化DNNS超参数的强大框架。 这些方法需要足够的评价数据,以估计和尽量减少超光度计的验证错误功能。 但是,DNNS的昂贵评价费用导致在有限的时间内评价数据很少,这大大降低了巴伊西亚优化的效率。此外,以前的研究侧重于使用完整的评价数据进行巴伊西亚优化,忽视早期停止方法产生的中间评价数据。为了缓解评价数据不足的问题,我们建议采用快速超光度优化方法,即HOISST,利用完整和中间评价数据加速DNNS的超光谱度优化。具体地说,我们培训多个基本假定,从混合评价数据中收集信息,然后将所有基本假定数据结合起来,使用加权包装,提供准确的混合代孕门。我们的经验研究表明,HOIST在一系列广泛的DNNS网络上超越了状态设计的方法,包括为前向神经网络、内质变常态网络和不断的神经网络。