The advancement of large language models (LLMs) has propelled the development of dialogue systems. Unlike the popular ChatGPT-like assistant model, which only satisfies the user's preferences, task-oriented dialogue systems have also faced new requirements and challenges in the broader business field. They are expected to provide correct responses at each dialogue turn, at the same time, achieve the overall goal defined by the task. By understanding rhetorical structures and topic structures via topic segmentation and discourse parsing, a dialogue system may do a better planning to achieve both objectives. However, while both structures belong to discourse structure in linguistics, rhetorical structure and topic structure are mostly modeled separately or with one assisting the other in the prior work. The interaction between these two structures has not been considered for joint modeling and mutual learning. Furthermore, unsupervised learning techniques to achieve the above are not well explored. To fill this gap, we propose an unsupervised mutual learning framework of two structures leveraging the global and local connections between them. We extend the topic modeling between non-adjacent discourse units to ensure global structural relevance with rhetorical structures. We also incorporate rhetorical structures into the topic structure through a graph neural network model to ensure local coherence consistency. Finally, we utilize the similarity between the two fused structures for mutual learning. The experimental results demonstrate that our methods outperform all strong baselines on two dialogue rhetorical datasets (STAC and Molweni), as well as dialogue topic datasets (Doc2Dial and TIAGE). We provide our code at https://github.com/Jeff-Sue/URT.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员