Neuro-symbolic representations have proved effective in learning structure information in vision and language. In this paper, we propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning. Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions. We refer to these relations as relative roles and leverage them to make each token role-aware using attention. This results in a more structured and interpretable architecture that incorporates modality-specific inductive biases for the captioning task. Intuitively, the model is able to learn spatial, temporal, and cross-modal relations in a given pair of video and text. The disentanglement achieved by our proposal gives the model more capacity to capture multi-modal structures which result in captions with higher quality for videos. Our experiments on two established video captioning datasets verifies the effectiveness of the proposed approach based on automatic metrics. We further conduct a human evaluation to measure the grounding and relevance of the generated captions and observe consistent improvement for the proposed model. The codes and trained models can be found at https://github.com/hassanhub/R3Transformer
翻译:Neuro-Symbolic 表示方式在视觉和语言的学习结构信息方面证明是有效的。在本文中,我们提议了一个新的模型结构,用于学习视频字幕的多模式神经-精神-共体表达方式。我们的方法使用一种基于字典的学习方法,在视频及其配对文本描述之间建立学习关系。我们将这些关系称为相对作用,利用它们来使每个象征性角色得到注意。这导致形成一个结构化和解释性更强的结构,其中结合了对说明任务的具体模式的感应偏差。我们直观地认为,该模型能够学习给定一对视频和文本的空间、时间和跨模式关系。我们提案所实现的混乱使模型更有能力捕捉多模式结构,从而导致视频质量更高的字幕。我们在两个固定的视频说明数据集上进行的实验证实了基于自动计量标准的拟议方法的有效性。我们进一步进行了人类评估,以测量生成的字幕的基底和相关性,并观察拟议模型的一致改进。可以在 https://girub3/Transusorformasorforum.