Residual networks (ResNets) employ skip connections in their networks -- reusing activations from previous layers -- to improve training convergence, but these skip connections create challenges for hardware implementations of ResNets. The hardware must either wait for skip connections to be processed before processing more incoming data or buffer them elsewhere. Without skip connections, ResNets would be more hardware-efficient. Thus, we present the teacher-student learning method to gradually prune away all of a ResNet's skip connections, constructing a network we call NonResNet. We show that when implemented for FPGAs, NonResNet decreases ResNet's BRAM utilization by 9% and LUT utilization by 3% and increases throughput by 5%.
翻译:残余网络(ResNets)利用网络中的跳过连接 -- -- 重复使用前几层的激活 -- -- 来改进培训趋同,但这些跳过连接给ResNet的硬件实施带来了挑战。 硬件要么必须等待跳过连接才能处理更多的输入数据, 要么在别处缓冲。 没有跳过连接, ResNet会更具有硬件效率。 因此, 我们提出师生学习方法, 逐步清除ResNet的所有跳过连接, 构建一个我们称之为NonResNet的网络。 我们显示, 当实施 FPGas 时, NonResNet 将ResNet的BRAM利用率减少9%, LUT 利用率减少3%, 吞吐量增加5% 。