We study the problem of quickly computing point-to-point shortest paths in massive road networks with traffic predictions. Incorporating traffic predictions into routing allows, for example, to avoid commuter traffic congestions. Existing techniques follow a two-phase approach: In a preprocessing step, an index is built. The index depends on the road network and the traffic patterns but not on the path start and end. The latter are the input of the query phase, in which shortest paths are computed. All existing techniques have large index size, slow query running times or may compute suboptimal paths. In this work, we introduce CATCHUp (Customizable Approximated Time-dependent Contraction Hierarchies through Unpacking), the first algorithm that simultaneously achieves all three objectives.The core idea of CATCHUp is to store paths instead of travel times at shortcuts. Shortcut travel times are derived lazily from the stored paths. We perform an experimental study on a set of real world instances and compare our approach with state-of-the-art techniques. Our approach achieves the fastest preprocessing, competitive query running times and up to 38 times smaller indexes than competing approaches.
翻译:我们用交通预测来研究在大型公路网中快速计算点到点的最短路径的问题。 将交通预测纳入路线可以避免通勤交通堵塞。 现有技术采用两个阶段的方法: 在预处理步骤中, 建立一个指数。 该指数取决于公路网和交通模式, 而不是路径的开始和结束。 后者是查询阶段的输入, 计算路径最短。 所有现有技术都具有巨大的指数大小, 查询运行时间缓慢, 或者可能计算出亚最佳路径 。 在这项工作中, 我们引入了CATCHUP( 通过解包, 强制使用一个时间依赖时间的合同等级), 这是第一个同时实现所有三个目标的算法 。 CATCHUP的核心想法是存储路径, 而不是在捷径上存储旅行时间 。 捷径时间是从存储路径中模糊的 。 我们对一套真实世界实例进行实验研究, 并将我们的方法与最先进的技术进行比较。 我们的方法实现了最快速的预处理、 竞争性的查询时间和38 次小的比较。