We study exact, efficient and practical algorithms for route planning in large road networks. Routing applications often require integrating the current traffic situation, planning ahead with traffic predictions for the future, respecting forbidden turns, and many other features depending on the exact application. While Dijkstra's algorithm can be used to solve these problems, it is too slow for many applications. A* is a classical approach to accelerate Dijkstra's algorithm. A* can support many extended scenarios without much additional implementation complexity. However, A*'s performance depends on the availability of a good heuristic that estimates distances. Computing tight distance estimates is a challenge on its own. On road networks, shortest paths can also be quickly computed using hierarchical speedup techniques. They achieve speed and exactness but sacrifice A*'s flexibility. Extending them to certain practical applications can be hard. In this paper, we present an algorithm to efficiently extract distance estimates for A* from Contraction Hierarchies (CH), a hierarchical technique. We call our heuristic CH-Potentials. Our approach allows decoupling the supported extensions from the hierarchical speed-up technique. Additionally, we describe A* optimizations to accelerate the processing of low degree nodes, which often occur in road networks.


翻译:我们研究大型公路网路线规划的精确、高效和实用的算法。 运行应用程序往往需要整合当前的交通状况,提前规划未来交通预测,尊重被禁止的转弯,以及取决于具体应用的许多其他特征。 虽然Dijkstra的算法可以用来解决这些问题,但对于许多应用来说,算法太慢。 A* 是加速Dijkstra的算法的经典方法。 A* 能够支持许多延长的假设,而没有额外的执行复杂性。 但是, A* 的性能取决于是否有一种良好的超常估计距离。 计算紧凑的距离估计数本身是一个挑战。 在道路网上,也可以使用等级加速技术快速计算最短的路径。 它们可以达到速度和精确度,但牺牲A* 的灵活性。 将它们推广到某些实际应用上可能很困难。 在本文中,我们提出一个算法,可以有效地提取A* 的距离估计数,从合同高度技术(CH) 的等级技术(一种等级技术) 。 我们称之为超常的CH- Potentials。 我们的方法可以将支持的扩展范围从等级加速速度技术中解开。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CVPR2018 | Decoupled Networks
极市平台
4+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CVPR2018 | Decoupled Networks
极市平台
4+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员