We study exact, efficient and practical algorithms for route planning in large road networks. Routing applications often require integrating the current traffic situation, planning ahead with traffic predictions for the future, respecting forbidden turns, and many other features depending on the exact application. While Dijkstra's algorithm can be used to solve these problems, it is too slow for many applications. A* is a classical approach to accelerate Dijkstra's algorithm. A* can support many extended scenarios without much additional implementation complexity. However, A*'s performance depends on the availability of a good heuristic that estimates distances. Computing tight distance estimates is a challenge on its own. On road networks, shortest paths can also be quickly computed using hierarchical speedup techniques. They achieve speed and exactness but sacrifice A*'s flexibility. Extending them to certain practical applications can be hard. In this paper, we present an algorithm to efficiently extract distance estimates for A* from Contraction Hierarchies (CH), a hierarchical technique. We call our heuristic CH-Potentials. Our approach allows decoupling the supported extensions from the hierarchical speed-up technique. Additionally, we describe A* optimizations to accelerate the processing of low degree nodes, which often occur in road networks.
翻译:我们研究大型公路网路线规划的精确、高效和实用的算法。 运行应用程序往往需要整合当前的交通状况,提前规划未来交通预测,尊重被禁止的转弯,以及取决于具体应用的许多其他特征。 虽然Dijkstra的算法可以用来解决这些问题,但对于许多应用来说,算法太慢。 A* 是加速Dijkstra的算法的经典方法。 A* 能够支持许多延长的假设,而没有额外的执行复杂性。 但是, A* 的性能取决于是否有一种良好的超常估计距离。 计算紧凑的距离估计数本身是一个挑战。 在道路网上,也可以使用等级加速技术快速计算最短的路径。 它们可以达到速度和精确度,但牺牲A* 的灵活性。 将它们推广到某些实际应用上可能很困难。 在本文中,我们提出一个算法,可以有效地提取A* 的距离估计数,从合同高度技术(CH) 的等级技术(一种等级技术) 。 我们称之为超常的CH- Potentials。 我们的方法可以将支持的扩展范围从等级加速速度技术中解开。