Generative Adversarial Networks (GANs) have paved the path towards entirely new media generation capabilities at the forefront of image, video, and audio synthesis. However, they can also be misused and abused to fabricate elaborate lies, capable of stirring up the public debate. The threat posed by GANs has sparked the need to discern between genuine content and fabricated one. Previous studies have tackled this task by using classical machine learning techniques, such as k-nearest neighbours and eigenfaces, which unfortunately did not prove very effective. Subsequent methods have focused on leveraging on frequency decompositions, i.e., discrete cosine transform, wavelets, and wavelet packets, to preprocess the input features for classifiers. However, existing approaches only rely on isotropic transformations. We argue that, since GANs primarily utilize isotropic convolutions to generate their output, they leave clear traces, their fingerprint, in the coefficient distribution on sub-bands extracted by anisotropic transformations. We employ the fully separable wavelet transform and multiwavelets to obtain the anisotropic features to feed to standard CNN classifiers. Lastly, we find the fully separable transform capable of improving the state-of-the-art.


翻译:创世网络(GANs)为全新的媒体生成能力铺平了道路,在图像、视频和音频合成的前沿铺平了全新的媒体生成能力,然而,它们也可能被滥用和滥用来编造精细的谎言,能够引起公众辩论。全球网络构成的威胁引发了在真实内容和编造内容之间辨别的必要性。以前的研究通过使用经典机器学习技术,如K-近邻和叶形脸,但不幸的是,这些技术并不十分有效。随后的方法侧重于利用频率分解装置,即离散的 Cosine变换、波子和波子包,为分类者预处理输入特性。然而,现有办法只依靠异形变换。我们说,由于GANs主要利用异端变来产生输出,因此在通过异形变换的子带上的系数分布中留下清晰的痕迹和指纹。我们利用完全分解的波质变和多波子包,以获得可变的SARMS-S-CAR-SQ-SQ-stal-stal-stal-stal-stal-stalstalstalstable fegrational-stal-stal-stal-stalstal-stablestalstablestablestablestablestablestablestablestablestalstalstalfewstablestablestablestablestablestablestablestablestablestablestalpstalptalpstalpstalstal)的特性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月12日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员