Generative Adversarial Networks (GANs) have paved the path towards entirely new media generation capabilities at the forefront of image, video, and audio synthesis. However, they can also be misused and abused to fabricate elaborate lies, capable of stirring up the public debate. The threat posed by GANs has sparked the need to discern between genuine content and fabricated one. Previous studies have tackled this task by using classical machine learning techniques, such as k-nearest neighbours and eigenfaces, which unfortunately did not prove very effective. Subsequent methods have focused on leveraging on frequency decompositions, i.e., discrete cosine transform, wavelets, and wavelet packets, to preprocess the input features for classifiers. However, existing approaches only rely on isotropic transformations. We argue that, since GANs primarily utilize isotropic convolutions to generate their output, they leave clear traces, their fingerprint, in the coefficient distribution on sub-bands extracted by anisotropic transformations. We employ the fully separable wavelet transform and multiwavelets to obtain the anisotropic features to feed to standard CNN classifiers. Lastly, we find the fully separable transform capable of improving the state-of-the-art.
翻译:创世网络(GANs)为全新的媒体生成能力铺平了道路,在图像、视频和音频合成的前沿铺平了全新的媒体生成能力,然而,它们也可能被滥用和滥用来编造精细的谎言,能够引起公众辩论。全球网络构成的威胁引发了在真实内容和编造内容之间辨别的必要性。以前的研究通过使用经典机器学习技术,如K-近邻和叶形脸,但不幸的是,这些技术并不十分有效。随后的方法侧重于利用频率分解装置,即离散的 Cosine变换、波子和波子包,为分类者预处理输入特性。然而,现有办法只依靠异形变换。我们说,由于GANs主要利用异端变来产生输出,因此在通过异形变换的子带上的系数分布中留下清晰的痕迹和指纹。我们利用完全分解的波质变和多波子包,以获得可变的SARMS-S-CAR-SQ-SQ-stal-stal-stal-stal-stal-stalstalstalstable fegrational-stal-stal-stal-stalstal-stablestalstablestablestablestablestablestablestablestablestalstalstalfewstablestablestablestablestablestablestablestablestablestablestalpstalptalpstalpstalstal)的特性。