Machine Learning as a service (MLaaS) permits resource-limited clients to access powerful data analytics services ubiquitously. Despite its merits, MLaaS poses significant concerns regarding the integrity of delegated computation and the privacy of the server's model parameters. To address this issue, Zhang et al. (CCS'20) initiated the study of zero-knowledge Machine Learning (zkML). Few zkML schemes have been proposed afterward; however, they focus on sole ML classification algorithms that may not offer satisfactory accuracy or require large-scale training data and model parameters, which may not be desirable for some applications. We propose ezDPS, a new efficient and zero-knowledge ML inference scheme. Unlike prior works, ezDPS is a zkML pipeline in which the data is processed in multiple stages for high accuracy. Each stage of ezDPS is harnessed with an established ML algorithm that is shown to be effective in various applications, including Discrete Wavelet Transformation, Principal Components Analysis, and Support Vector Machine. We design new gadgets to prove ML operations effectively. We fully implemented ezDPS and assessed its performance on real datasets. Experimental results showed that ezDPS achieves one-to-three orders of magnitude more efficient than the generic circuit-based approach in all metrics while maintaining more desirable accuracy than single ML classification approaches.
翻译:作为一种服务的机器学习(MLaaAS)使资源有限的客户能够无处不在地获得强有力的数据分析服务。尽管它有其优点,但MLaaS对委托计算的完整性和服务器模型参数的隐私提出了重大关切。为解决这一问题,张等人(CCS'20)启动了零知识机器学习研究(zkML),此后提出了很少的zkML计划;然而,它们侧重于单一的ML分类算法,这种算法可能不能提供令人满意的准确性,或需要大规模培训数据和模型参数,而这种算法可能对某些应用来说可能不可取。我们提出了新的MEDPS,即新的高效和零知识ML推断方案。不同于以往的工程,ZDPS是一个zkML管道,在多个阶段处理数据,以便高精度地高精度。ZDPS的每个阶段都使用一个固定的ML算法,这些算法在各种应用中都证明有效,包括不精度波板转换、主要构件分析以及支持矢量机。我们设计了新的配置图,以证明ML操作的精准性操作,以证明ML操作的精度。我们设计了比实际操作更精准性S级化的进度,而我们在对通用的SMDS级的进度上展示了比S级的进度上显示了比S级级的进度都显示了比S级级级的进度。我们完全的进度。我们展示了比的进度。我们在S级级级方法的进度。我们展示了比实际的进度,在S级的S级方法的S级的S级测算得得得更精度。