The increase in the use of the Internet and web services and the advent of the fifth generation of cellular network technology (5G) along with ever-growing Internet of Things (IoT) data traffic will grow global internet usage. To ensure the security of future networks, machine learning-based intrusion detection and prevention systems (IDPS) must be implemented to detect new attacks, and big data parallel processing tools can be used to handle a huge collection of training data in these systems. In this paper Apache Spark, a general-purpose and fast cluster computing platform is used for processing and training a large volume of network traffic feature data. In this work, the most important features of the CSE-CIC-IDS2018 dataset are used for constructing machine learning models and then the most popular machine learning approaches, namely Logistic Regression, Support Vector Machine (SVM), three different Decision Tree Classifiers, and Naive Bayes algorithm are used to train the model using up to eight number of worker nodes. Our Spark cluster contains seven machines acting as worker nodes and one machine is configured as both a master and a worker. We use the CSE-CIC-IDS2018 dataset to evaluate the overall performance of these algorithms on Botnet attacks and distributed hyperparameter tuning is used to find the best single decision tree parameters. We have achieved up to 100% accuracy using selected features by the learning method in our experiments


翻译:为确保未来网络的安全,必须采用基于机器学习的入侵探测和预防系统(IDPS)来检测新的袭击,并使用大数据平行处理工具来处理这些系统中的大量培训数据。在本论文Apache Spark中,一个通用和快速集束计算平台用于处理和培训大量网络通信特征数据。在这项工作中,CSE-CIC-IDS2018数据集的最重要功能被用于构建机器学习模型,然后是最受欢迎的机器学习方法,即物流回归、支持矢量机(SVM)、三个不同的决策树分类仪和Nive Bayes算法,用于培训模型,使用多达8个工人节点。我们的Spoint集包含7台机器,作为工人节点,一个机器被配置为主和工人。我们使用CSE-CIC-IDS20的最重要的特征来构建机器来构建机器学习模型,然后用我们100-CIC-IDS的精确度参数进行最佳的测试。我们使用CSE-ID18的模型来进行我们所选的学习的系统测试,通过Sybrodeal sal sal salation sal squt the supation the sal sal sal supal sal sal sal sal sal sal squt the the me

0
下载
关闭预览

相关内容

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月9日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员