Nested named entity recognition (nested NER) is a fundamental task in natural language processing. Various span-based methods have been proposed to detect nested entities with span representations. However, span-based methods do not consider the relationship between a span and other entities or phrases, which is helpful in the NER task. Besides, span-based methods have trouble predicting long entities due to limited span enumeration length. To mitigate these issues, we present the Propose-and-Refine Network (PnRNet), a two-stage set prediction network for nested NER. In the propose stage, we use a span-based predictor to generate some coarse entity predictions as entity proposals. In the refine stage, proposals interact with each other, and richer contextual information is incorporated into the proposal representations. The refined proposal representations are used to re-predict entity boundaries and classes. In this way, errors in coarse proposals can be eliminated, and the boundary prediction is no longer constrained by the span enumeration length limitation. Additionally, we build multi-scale sentence representations, which better model the hierarchical structure of sentences and provide richer contextual information than token-level representations. Experiments show that PnRNet achieves state-of-the-art performance on four nested NER datasets and one flat NER dataset.


翻译:在自然语言处理中,一个基本任务就是名牌实体识别(NER)是自然语言处理中的一项基本任务。已经提出了各种跨范围的方法,以探测具有跨度表示的嵌套实体。但是,基于区域的方法并不考虑一个区域与其他实体或短语之间的关系,而这种关系有助于NER的任务。此外,基于区域的方法也难以预测长的实体,因为宽度的查点长度有限。为了缓解这些问题,我们提出了“提议和Refine网络”(PnRNet),这是一个双阶段的嵌套NER的预测网络。在建议阶段,我们使用一个基于跨区域的预测器来生成一些粗度的实体预测,作为实体提案。在完善的阶段,建议相互互动,以及更丰富的背景信息被纳入到提案的表述中。改进后的提案表述用于重新预测实体的边界和等级。这样,粗度建议中的错误可以消除,边界预测不会因为宽度的长度限制而更长。此外,我们建立多级的句式陈述,它能更好地模拟句的等级结构,并提供比象征性的NER数据库更丰富的背景信息。实验显示,在4级的状态上实现的状态数据。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员