Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data. Previous methods solve this problem based on token-wise classification, which ignores the information of entity boundaries, and inevitably the performance is affected by the massive non-entity tokens. To this end, we propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach, including span extraction and mention classification. In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information. For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities. To further improve the model performance, we split out the false positives generated by the span extractor but not labeled in the current episode set, and then present a margin-based loss to separate them from each prototype region. Experiments over multiple benchmarks demonstrate that our model outperforms strong baselines by a large margin.
翻译:少发点名实体识别( NER ) 旨在识别点名实体, 其附加说明的数据很少 。 先前的方法基于象征性分类解决了这个问题, 它忽略了实体边界的信息, 并且其性能不可避免地受到大规模非实体标志的影响 。 为此, 我们提出一个基于原始光谱的原型网络( SpanProto ), 通过两阶段方法解决点名实体的NER 问题, 包括跨区提取和提及分类 。 在抽取阶段, 我们将顺序标记转换成一个全球边界矩阵, 使模型能够关注明确的边界信息 。 举例来说, 我们利用原型学习来捕捉每个标记区域的语义表达方式, 并使模型更好地适应新式类实体 。 为了进一步改善模型性能, 我们将光谱提取器生成的假正数分割出来, 但没有在目前的插图中贴上标签, 然后提出以差值为基础的损失来将它们与每个原型区域分开 。 多个基准的实验显示, 我们的模型比值比值比值比重大得多 。