Generative Adversarial Networks (GANs) have revolutionized image synthesis through many applications like face generation, photograph editing, and image super-resolution. Image synthesis using GANs has predominantly been uni-modal, with few approaches that can synthesize images from text or other data modes. Text-to-image synthesis, especially text-to-face synthesis, has promising use cases of robust face-generation from eye witness accounts and augmentation of the reading experience with visual cues. However, only a couple of datasets provide consolidated face data and textual descriptions for text-to-face synthesis. Moreover, these textual annotations are less extensive and descriptive, which reduces the diversity of faces generated from it. This paper empirically proves that increasing the number of facial attributes in each textual description helps GANs generate more diverse and real-looking faces. To prove this, we propose a new methodology that focuses on using structured textual descriptions. We also consolidate a Multi-Attributed and Structured Text-to-face (MAST) dataset consisting of high-quality images with structured textual annotations and make it available to researchers to experiment and build upon. Lastly, we report benchmark Frechet's Inception Distance (FID), Facial Semantic Similarity (FSS), and Facial Semantic Distance (FSD) scores for the MAST dataset.


翻译:生成模拟网络(GANs)通过面部生成、照片编辑和图像超分辨率等多种应用使图像合成革命化。使用GANs的图像合成主要是单式和描述性的,使用GANs的图像合成主要是单式的,几乎没有什么方法能够从文本或其他数据模式中合成图像。文本到图像合成,特别是文本到面部合成,有希望地使用从目击证人账户中生成强有力的面部生成的实例,并增加视觉提示的阅读经验。然而,只有几套数据集为文本到脸部合成提供了合并的面部数据和文字描述。此外,这些文字说明没有那么广泛和描述性,减少了从中生成的面部多样性。这份文件从经验上证明,增加每个文本描述中的面部属性有助于GANs产生更多样化和真实的面部。为了证明这一点,我们提出了一个新的方法,重点是使用结构化的文本描述。我们还整合了一个多属性和结构化的文本到脸部数据集,包括结构化的高质量图像以及结构化的文字说明,并提供给研究人员用于实验和构建长期数据(SeasireFS),最后,我们提出了一个基准(Seacils-Sadrial Statrial)。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
106+阅读 · 2020年5月3日
专知会员服务
60+阅读 · 2020年3月19日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
60+阅读 · 2020年1月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员