The article shows how to learn models of dynamical systems from data which are governed by an unknown variational PDE. Rather than employing reduction techniques, we learn a discrete field theory governed by a discrete Lagrangian density $L_d$ that is modelled as a neural network. Careful regularisation of the loss function for training $L_d$ is necessary to obtain a field theory that is suitable for numerical computations: we derive a regularisation term which optimises the solvability of the discrete Euler--Lagrange equations. Secondly, we develop a method to find solutions to machine learned discrete field theories which constitute travelling waves of the underlying continuous PDE.
翻译:暂无翻译