This paper is a follow-up on the noncommutative differential geometry on infinitesimal spaces [19]. In the present work, we extend the algebraic convergence from [19] to the geometric setting. On the one hand, we reformulate the definition of finite dimensional compatible Dirac operators using Clifford algebras. This definition also leads to a new construction of a Laplace operator. On the other hand, after a brief introduction of the Von Mises-Fisher distribution on manifolds, we show that when the Dirac operators are interpreted as stochastic matrices, the sequence $(D_n)_{n\in \mathbb{N}}$ converges in average to the usual Dirac operator on a spin manifold. The same conclusion can be drawn for the Laplace operator.
翻译:本文是上一篇提出的关于无穷小空间上的非交换微分几何的后续工作[19]。本文中,我们将代数收敛性推广到了几何情形。一方面,我们利用Clifford代数重新定义了有限维相容的Dirac算子,这一定义还引出了一个新构造的Laplace算子。另一方面,简要介绍了Von Mises-Fisher分布在流形上的应用,并证明了当Dirac算子被解释为随机矩阵时,序列 $(D_n)_{n\in \mathbb{N}}$ 的平均收敛于旋转流形上的标准Dirac算子。对Laplace算子同样可以得到相同的结论。