This paper is a follow-up on the noncommutative differential geometry on infinitesimal spaces [19]. In the present work, we extend the algebraic convergence from [19] to the geometric setting. On the one hand, we reformulate the definition of finite dimensional compatible Dirac operators using Clifford algebras. This definition also leads to a new construction of a Laplace operator. On the other hand, after a brief introduction of the Von Mises-Fisher distribution on manifolds, we show that when the Dirac operators are interpreted as stochastic matrices, the sequence $(D_n)_{n\in \mathbb{N}}$ converges in average to the usual Dirac operator on a spin manifold. The same conclusion can be drawn for the Laplace operator.


翻译:本文是上一篇提出的关于无穷小空间上的非交换微分几何的后续工作[19]。本文中,我们将代数收敛性推广到了几何情形。一方面,我们利用Clifford代数重新定义了有限维相容的Dirac算子,这一定义还引出了一个新构造的Laplace算子。另一方面,简要介绍了Von Mises-Fisher分布在流形上的应用,并证明了当Dirac算子被解释为随机矩阵时,序列 $(D_n)_{n\in \mathbb{N}}$ 的平均收敛于旋转流形上的标准Dirac算子。对Laplace算子同样可以得到相同的结论。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
125+阅读 · 2023年1月29日
【干货书】凸随机优化,320页pdf
专知会员服务
84+阅读 · 2022年9月16日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
43+阅读 · 2022年2月19日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员