Rankings and scores are two common data types used by judges to express preferences and/or perceptions of quality in a collection of objects. Numerous models exist to study data of each type separately, but no unified statistical model captures both data types simultaneously without first performing data conversion. We propose the Mallows-Binomial model to close this gap, which combines a Mallows' $\phi$ ranking model with Binomial score models through shared parameters that quantify object quality, a consensus ranking, and the level of consensus between judges. We propose an efficient tree-search algorithm to calculate the exact MLE of model parameters, study statistical properties of the model both analytically and through simulation, and apply our model to real data from an instance of grant panel review that collected both scores and partial rankings. Furthermore, we demonstrate how model outputs can be used to rank objects with confidence. The proposed model is shown to sensibly combine information from both scores and rankings to quantify object quality and measure consensus with appropriate levels of statistical uncertainty.
翻译:评分和评分是法官在收集对象时用来表示偏好和/或对质量的看法的两种通用数据类型。许多模型存在,可以分别研究每一种类型的数据,但是没有统一的统计模型在不首先进行数据转换的情况下同时捕捉两种数据类型。我们建议采用Mallows-Binomial模型来缩小这一差距,这种模型将Mallows $\phi$的排名模型与Binomial分数模型结合起来,方法是通过共同参数来量化目标质量、协商一致的排名和法官之间的共识水平。我们建议一种高效的树搜索算法,用以计算模型参数的准确 MLE,通过分析和模拟来研究模型的统计属性,并将我们的模型用于从赠款小组审查中收集得分数和部分排名的实际数据。此外,我们演示了如何使用模型产出来以信任的方式对对象进行排位。我们展示了从分和分级中收集的信息,以便以适当的统计不确定性水平来量化对象质量和计量共识。