Existing data-dependent hashing methods use large backbone networks with millions of parameters and are computationally complex. Existing knowledge distillation methods use logits and other features of the deep (teacher) model and as knowledge for the compact (student) model, which requires the teacher's network to be fine-tuned on the context in parallel with the student model on the context. Training teacher on the target context requires more time and computational resources. In this paper, we propose context unaware knowledge distillation that uses the knowledge of the teacher model without fine-tuning it on the target context. We also propose a new efficient student model architecture for knowledge distillation. The proposed approach follows a two-step process. The first step involves pre-training the student model with the help of context unaware knowledge distillation from the teacher model. The second step involves fine-tuning the student model on the context of image retrieval. In order to show the efficacy of the proposed approach, we compare the retrieval results, no. of parameters and no. of operations of the student models with the teacher models under different retrieval frameworks, including deep cauchy hashing (DCH) and central similarity quantization (CSQ). The experimental results confirm that the proposed approach provides a promising trade-off between the retrieval results and efficiency. The code used in this paper is released publicly at \url{https://github.com/satoru2001/CUKDFIR}.


翻译:现有知识蒸馏方法使用深(教师)模式的逻辑和其他特征,并用作紧凑(学生)模式的知识,该模式要求教师网络与学生模型平行地对背景进行微调; 目标背景下的培训师需要更多的时间和计算资源; 本文建议,在使用教师模型知识而不对目标背景进行微调的情况下,进行背景不知情的蒸馏; 我们还提出一个新的高效学生模型结构,用于知识蒸馏; 拟议的方法遵循两步进程; 第一步是先对学生模型进行培训,同时借助教师模型的不知情知识蒸馏; 第二步是在图像检索方面对学生模型进行微调; 为了显示拟议方法的功效,我们将学生模型的检索结果、参数和操作的无与不同检索框架下的教师模型进行比较,包括深度Cacyhing(DCH)和核心版本的回收结果; 在公开文件中,在使用这一模拟/核心版本的回收结果中,提供了一种相似的结果。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年1月27日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员