Detecting anomalous subgraphs in a dynamic graph in an online or streaming fashion is an important requirement in industrial settings for intrusion detection or denial of service attacks. While only detecting anomalousness in the system by edge frequencies is an optimal approach, many latent information can get unnoticed in the process, since as a characteristic of the network only edge frequencies are considered. We propose a game theoretic approach whereby using the modularity function we try to estimate in a streaming graph \emph{whether addition of a new edge in the current time tick results in a dense subgraph creation, thus indicating possible anomalous score}. Our contributions are as follows: (a) We propose a novel game-theoretic framework for detecting dense subcommunities in an online streaming environment; (b) We detect such subcommunities using constant memory storage. Our results are corroborated with empirical evaluation on real datasets.
翻译:以在线或流式方式在动态图中检测异常子集,是工业环境中入侵探测或拒绝服务攻击的一个重要要求。虽然只有通过边缘频率探测系统中的异常是最佳办法,但许多潜伏信息在这一过程中可能会被忽略,因为作为网络特性,只考虑边缘频率。我们提出了一个游戏理论方法,即我们试图在流图\emph{中利用模块化函数来估计当前时钟中新边缘的增加是否导致大量子谱的创建,从而显示可能的异常分 。我们的贡献如下:(a) 我们提出一个新的游戏理论框架,用于在在线流环境中检测稠密次群;(b) 我们利用恒定的记忆存储来检测这种亚群。我们的结果通过对真实数据集的经验评估得到证实。