Inverse kinematics (IK) is the problem of finding robot joint configurations that satisfy constraints on the position or pose of one or more end-effectors. For robots with redundant degrees of freedom, there is often an infinite, nonconvex set of solutions. The IK problem is further complicated when collision avoidance constraints are imposed by obstacles in the workspace. In general, closed-form expressions yielding feasible configurations do not exist, motivating the use of numerical solution methods. However, these approaches rely on local optimization of nonconvex problems, often requiring an accurate initialization or numerous re-initializations to converge to a valid solution. In this work, we first formulate complicated inverse kinematics problems as convex feasibility problems whose low-rank feasible points provide exact IK solutions. We then present CIDGIK (Convex Iteration for Distance-Geometric Inverse Kinematics), an algorithm that solves these feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. Our problem formulation elegantly unifies the configuration space and workspace constraints of a robot: intrinsic robot geometry and obstacle avoidance are both expressed as simple linear matrix equations and inequalities. Our experimental results for a variety of popular manipulator models demonstrate faster and more accurate convergence than a conventional nonlinear optimization-based approach, especially in environments with many obstacles.
翻译:反动感官( IK) 是找到机器人联合配置的问题, 以满足对一个或一个以上终端效应的定位或成形的制约。 对于具有冗余自由度的机器人来说, 通常会有一个无限的、 非convex 的解决方案。 当工作空间中的障碍造成碰撞障碍时, IK 问题就更加复杂。 一般来说, 不存在产生可行配置的封闭式表达式, 激励使用数字解决方案。 然而, 这些方法依赖于本地优化非对流问题, 往往需要精确的初始化或无数的重新初始化, 才能凝聚到一个有效的解决方案。 对于具有冗余自由度的机器人, 我们首先将复杂的反向运动障碍作为共振的可行性问题, 其低端可行点提供了精确的 IK 解决方案。 然后我们介绍CIDGIK (远程测量的Convolexexexation), 一种算法可以解决这些可行性问题, 其目标旨在鼓励低级别最小化的半定式程序。 我们的问题的配置式空间和工作空间的重新初始化, 其表达得优美化的空间和工作空间的制约, 以及一个更精确的常规的模型的模型, 以及一个比常规的不易变异化的模型的模型的不透明性模型, 。