We introduce semiparametric Bayesian networks that combine parametric and nonparametric conditional probability distributions. Their aim is to incorporate the advantages of both components: the bounded complexity of parametric models and the flexibility of nonparametric ones. We demonstrate that semiparametric Bayesian networks generalize two well-known types of Bayesian networks: Gaussian Bayesian networks and kernel density estimation Bayesian networks. For this purpose, we consider two different conditional probability distributions required in a semiparametric Bayesian network. In addition, we present modifications of two well-known algorithms (greedy hill-climbing and PC) to learn the structure of a semiparametric Bayesian network from data. To realize this, we employ a score function based on cross-validation. In addition, using a validation dataset, we apply an early-stopping criterion to avoid overfitting. To evaluate the applicability of the proposed algorithm, we conduct an exhaustive experiment on synthetic data sampled by mixing linear and nonlinear functions, multivariate normal data sampled from Gaussian Bayesian networks, real data from the UCI repository, and bearings degradation data. As a result of this experiment, we conclude that the proposed algorithm accurately learns the combination of parametric and nonparametric components, while achieving a performance comparable with those provided by state-of-the-art methods.


翻译:我们引入了将参数和不参数的有条件概率分布结合起来的半对称巴伊萨网络,目的是将两个组成部分的优点结合起来:参数模型的界限复杂性和非参数模型的灵活性。我们证明半对称巴伊萨网络概括了两种广为人知的巴伊西亚网络类型:高西亚巴伊西亚网络和内核密度估计巴伊西亚网络。为此,我们考虑在半对称巴伊西亚网络中需要两种不同的有条件概率分布。此外,我们介绍了两个众所周知的算法(Greedy山坡和PC)的修改,以便从数据中学习半对称巴伊萨网络的结构。为了实现这一点,我们使用了基于交叉校验的分功能。此外,我们使用一个早期停止标准来避免过度校准。为了评估拟议的算法的可适用性,我们通过混合线性和非线性功能、从戈伊亚巴伊萨网络中抽样的多变量正常数据样本和PC)来进行修改。为了实现这一点,我们使用了一个基于精确的州性能分析结果,我们从实验室数据库中得出了一种不具有可比性的数据。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员