Large-scale vision-language pre-training has shown promising advances on various downstream tasks and achieved significant performance in multi-modal understanding and generation tasks. However, existing methods often perform poorly on image-text matching tasks that require a detailed semantics understanding of the text. Although there have been some works on this problem, they do not sufficiently exploit the structural knowledge present in sentences to enhance multi-modal language representations, which leads to poor performance. In this paper, we present an end-to-end framework Structure-CLIP, which integrates latent detailed semantics from the text to enhance fine-grained semantic representations. Specifically, (1) we use scene graphs in order to pay more attention to the detailed semantic learning in the text and fully explore structured knowledge between fine-grained semantics, and (2) we utilize the knowledge-enhanced framework with the help of the scene graph to make full use of representations of structured knowledge. To verify the effectiveness of our proposed method, we pre-trained our models with the aforementioned approach and conduct experiments on different downstream tasks. Numerical results show that Structure-CLIP can often achieve state-of-the-art performance on both VG-Attribution and VG-Relation datasets. Extensive experiments show its components are effective and its predictions are interpretable, which proves that our proposed method can enhance detailed semantic representation well.
翻译:暂无翻译