Identifying prognostic factors for disease progression is a cornerstone of medical research. Repeated assessments of a marker outcome are often used to evaluate disease progression, and the primary research question is to identify factors associated with the longitudinal trajectory of this marker. Our work is motivated by diabetic kidney disease (DKD), where serial measures of estimated glomerular filtration rate (eGFR) are the longitudinal measure of kidney function, and there is notable interest in identifying factors, such as metabolites, that are prognostic for DKD progression. Linear mixed models (LMM) with serial marker outcomes (e.g., eGFR) are a standard approach for prognostic model development, namely by evaluating the time and prognostic factor (e.g., metabolite) interaction. However, two-stage methods that first estimate individual-specific eGFR slopes, and then use these as outcomes in a regression framework with metabolites as predictors are easy to interpret and implement for applied researchers. Herein, we compared the LMM and two-stage methods, in terms of bias and mean squared error via analytic methods and simulations, allowing for irregularly spaced measures and missingness. Our findings provide novel insights into when two-stage methods are suitable longitudinal prognostic modeling alternatives to the LMM. Notably, our findings generalize to other disease studies.


翻译:反复评估标记结果的线性混合模型(LMM)与序列标记结果(例如,eGFR)经常被用来评估与该标记的纵向轨迹相关的因素,而首要研究问题是确定与该标记的纵向轨迹相关的因素。我们的工作是由糖尿病肾病(DKD)驱动的,在那里,估计球状过滤率(eGFR)的序列测量是肾功能的纵向测量,人们非常希望确定对DKD进展具有预测性的因素,例如代谢物等对DKD进展具有预测性的因素。具有序列标记结果(例如,eGFR)的线性混合模型(LMMM)经常用来评估与该标记的纵向轨迹径径径径径径相关的因素。我们的工作是评估时间和预测性因素(例如,代谢物)之间的相互作用。然而,首先评估个人特定的球状体过滤率斜坡度(eGFR)的垂直度的测算,然后将这些结果作为回归框架的结果,作为预测剂易于解释和实施应用研究人员。在这里,我们将LMMMM和两阶段方法进行比较,从偏见和两阶段方法,通过模拟将我们的标准误判误判方法提供。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月4日
Arxiv
0+阅读 · 2022年11月30日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员