Self-supervised learning (SSL) leverages the underlying data structure to generate supervisory signals for training deep networks. This approach offers a practical solution for learning with multiplexed immunofluorescence brain images where data are often more abundant than human expert annotations. SSL algorithms based on contrastive learning and image reconstruction have demonstrated impressive performances. Unfortunately, these methods were designed and validated mostly on natural images rather than biomedical images. A few recent works have applied SSL to analyzing cell images. However, none of these works studies SSL for multiplexed immunofluorescence brain images. These works also did not provide a clear theoretical justification for adopting a specific SSL method. Motivated by these limitations, our paper presents a self-supervised Dual-Loss Adaptive Masked Autoencoder (DAMA) algorithm developed from the information theory viewpoint. DAMA's objective function maximizes the mutual information by minimizing the conditional entropy in pixel-level reconstruction and feature-level regression. In addition, DAMA introduces a novel adaptive mask sampling strategy to maximize mutual information and effectively learn brain cell data contextual information. For the first time, we provide extensive comparisons of SSL algorithms on multiplexed immunofluorescence brain images. Our results demonstrate that DAMA is superior to other SSL approaches on cell classification and segmentation tasks. DAMA also achieves competitive accuracies on ImageNet-1k. The source code for DAMA is made publicly available at https://github.com/hula-ai/DAMA


翻译:自我监督的学习(SSL)利用基本数据结构来生成监督性信号来培训深层网络。这个方法为学习多维免疫性免疫素露骨脑图象提供了一个实用的解决方案,在这种图象中,数据往往比人类专家的注解更丰富。基于对比学习和图像重建的SSL算法展示了令人印象深刻的性能。不幸的是,这些方法的设计和验证主要基于自然图像,而不是生物医学图像。最近的一些作品应用了SSL来分析细胞图像。然而,这些作品都没有对多x免疫素露骨大脑图像进行SSL(SSL)研究。这些作品也没有为采用特定的SSL方法提供明确的理论依据。受这些限制的驱动,我们的论文展示了从信息理论角度开发的自我监督的双层双层调整、修整的自动编码(DAMA)算法。DAMA的客观功能功能功能通过最大限度地增加相互的信息,在像素层层重建与特征水平回归中尽量减少有条件的酶。此外,DMA还引入了一种新型的调制源取样战略,以最大限度地学习脑细胞数据背景背景。在SLAMA的图像分析中进行。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员