It is desirable for statistical models to detect signals of interest independently of their position. If the data is generated by some smooth process, this additional structure should be taken into account. We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs). For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data. We propose different model architectures, show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
翻译:如果数据是由某种平稳过程生成的,则应考虑这一额外的结构。我们引入了一种新的神经网络,这种网络变化不定,数据保持平稳:功能性神经网络。为此,我们使用功能性数据分析方法(FDA)将多层感应器和进化神经网络扩展为功能性数据。我们提出不同的模型结构,显示模型在准确性方面优于林业发展局的基准模型,并成功使用功能性神经网络对电子脑学数据进行分类。