We study counterfactual classification as a new tool for decision-making under hypothetical (contrary to fact) scenarios. We propose a doubly-robust nonparametric estimator for a general counterfactual classifier, where we can incorporate flexible constraints by casting the classification problem as a nonlinear mathematical program involving counterfactuals. We go on to analyze the rates of convergence of the estimator and provide a closed-form expression for its asymptotic distribution. Our analysis shows that the proposed estimator is robust against nuisance model misspecification, and can attain fast $\sqrt{n}$ rates with tractable inference even when using nonparametric machine learning approaches. We study the empirical performance of our methods by simulation and apply them for recidivism risk prediction.
翻译:我们研究反事实分类,以此作为假设(与事实相反)情景下决策的新工具。我们提议为一般反事实分类者提供一个双倍粗体非参数非参数估计器,通过将分类问题作为一个涉及反事实的非线性数学程序,我们可以纳入灵活的制约因素。我们继续分析估计器的趋同率,并提供非现时分布的封闭式表达法。我们的分析表明,拟议的估计器对骚扰模型的错误区分非常有力,即使使用非对称机器学习方法,也可以以可追溯的推论方式达到快速的$(sqrt{n) 。我们通过模拟研究我们方法的经验性表现,并运用这些方法进行累犯风险预测。