Optimal transportation theory and the related $p$-Wasserstein distance ($W_p$, $p\geq 1$) are widely-applied in statistics and machine learning. In spite of their popularity, inference based on these tools has some issues. For instance, it is sensitive to outliers and it may not be even defined when the underlying model has infinite moments. To cope with these problems, first we consider a robust version of the primal transportation problem and show that it defines the {robust Wasserstein distance}, $W^{(\lambda)}$, depending on a tuning parameter $\lambda > 0$. Second, we illustrate the link between $W_1$ and $W^{(\lambda)}$ and study its key measure theoretic aspects. Third, we derive some concentration inequalities for $W^{(\lambda)}$. Fourth, we use $W^{(\lambda)}$ to define minimum distance estimators, we provide their statistical guarantees and we illustrate how to apply the derived concentration inequalities for a data driven selection of $\lambda$. Fifth, we provide the {dual} form of the robust optimal transportation problem and we apply it to machine learning problems (generative adversarial networks and domain adaptation). Numerical exercises provide evidence of the benefits yielded by our novel methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 基于开放世界的知识图谱补全
开放知识图谱
11+阅读 · 2018年7月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 基于开放世界的知识图谱补全
开放知识图谱
11+阅读 · 2018年7月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员