Regular expressions with capture variables, also known as regex-formulas, extract relations of spans (intervals identified by their start and end indices) from text. In turn, the class of regular document spanners is the closure of the regex formulas under the Relational Algebra. We investigate the computational complexity of querying text by aggregate functions, such as sum, average, and quantile, on top of regular document spanners. To this end, we formally define aggregate functions over regular document spanners and analyze the computational complexity of exact and approximate computation. More precisely, we show that in a restricted case, all studied aggregate functions can be computed in polynomial time. In general, however, even though exact computation is intractable, some aggregates can still be approximated with fully polynomial-time randomized approximation schemes (FPRAS).


翻译:获取变量的正则表达式, 也称为 regex- formulas, 从文本中提取跨度关系( 以其起始指数和终点指数识别的交互关系) 。 反过来, 普通的文档显示器的类别是 关系代数下的正则公式关闭 。 我们根据常规文档显示器的总计函数, 如总和、 平均值 和 量来调查质询文本的计算复杂性 。 为此, 我们正式定义常规文档显示器的总函数, 并分析精确和近似计算的复杂性 。 更准确地说, 我们显示, 在受限制的案例中, 所有研究过的合计函数都可以在多边时间计算 。 但是, 一般来说, 尽管精确计算是棘手的, 一些总计仍然可以与全圆时随机近比( FPRAS ) 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
5+阅读 · 2019年8月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员