In this paper, we consider permutation manipulations by any subset of women in the men-proposing version of the Gale-Shapley algorithm. This paper is motivated by the college admissions process in China. Our results also answer an open problem on what can be achieved by permutation manipulations. We present an efficient algorithm to find a strategy profile such that the induced matching is stable and Pareto-optimal (in the set of all achievable stable matchings) while the strategy profile itself is inconspicuous. Surprisingly, we show that such a strategy profile actually forms a Nash equilibrium of the manipulation game. In the end, we show that it is NP-complete to find a manipulation that is strictly better for all members of the coalition. This result demonstrates a sharp contrast between weakly better off outcomes and strictly better-off outcomes.
翻译:在本文中,我们考虑了任何女性子集在男候选人Gale-Shapley算法的男候选人版本中的变换操纵。 该文件的动机是中国的大学录取过程。 我们的结果也解决了有关变换操纵所能实现的目标的开放问题。 我们提出了一个高效的算法,以找到一个战略配置,使诱导匹配稳定,Pareto-opatimal(在所有可实现的稳定匹配中),而战略配置本身则不明显。 令人惊讶的是,我们显示这样的战略配置实际上构成了操纵游戏的纳什平衡。 最后,我们表明找到一个对联盟所有成员来说都非常更好的操纵是完全完善的。 这一结果显示了效果与效果差强而好的结果之间的鲜明对比。