In this paper, we study the impact of computational complexity on the throughput limits of the {\color{black}fast Fourier transform (FFT)} algorithm for {\color{black}orthogonal frequency division multiplexing(OFDM)} waveforms. Based on the spectro-computational {\color{\corcorrecao}complexity} (SC) analysis, {\color{\corcorrecao} we verify that the complexity of an $N$-point FFT grows faster than the number of bits in the OFDM symbol.} Thus, we show that FFT nullifies the OFDM throughput on $N$ unless the $N$-point discrete Fourier transform (DFT) problem verifies as $\Omega(N)$, which remains a "fascinating" open question in theoretical computer science. Also, because FFT demands $N$ to be a power of two $2^i$ ($i>0$), the spectrum widening leads to an exponential complexity on $i$, i.e. $O(2^ii)$. To overcome these limitations, {\color{\corcorrecao} we consider the alternative frequency-time transform formulation of vector OFDM (V-OFDM), in which an $N$-point FFT is replaced by $N/L$ ($L$$>$$0$) smaller {\color{\corcorrecao}$L$-point} FFTs to mitigate the cyclic prefix overhead of OFDM. Building on that, we replace FFT by the straightforward DFT algorithm to release the V-OFDM parameters from growing as powers of two and to benefit from flexible numerology (e.g., $L=3$, $N=156$). Besides, by setting $L$ to $\Theta(1)$, the resulting solution can run linearly on $N$ (rather than exponentially on $i$) while sustaining a non null throughput as $N$ grows. }


翻译:在本文中,我们研究计算复杂度对 $ color {black} freier 变换(FFT)} 运算法对 $ color{black} 倍变换(OFDM) 的量值限制的影响。 根据光谱-剖面分析 } (SC) (c) 分析, $ color_cororrecault} (color) (FFFFT) 的量增长速度比 OrcD 符号中位数(FFT) 的量增长快。 因此,我们证明 FFFT 以美元分解(O) 离子分解(ODM) 变换成$ Omega (N), 这仍然是理论科学学上的一个“令人着迷惑的” 数字。此外,FFFFFT需要一美元 美元 的量增长到 美元 美元 美元, 美元 美元 美元 美元 美元 的量 美元 美元 和 美元 美元 美元 美元 美元 美元 美元 美元 的量 的量 的量, 将我们 的 的量 的量 以 的 的 的值 的 的 以 的 以 以 以 的 的 的 的 美元 美元

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员