This paper aims to synthesize the target speaker's speech with desired speaking style and emotion by transferring the style and emotion from reference speech recorded by other speakers. We address this challenging problem with a two-stage framework composed of a text-to-style-and-emotion (Text2SE) module and a style-and-emotion-to-wave (SE2Wave) module, bridging by neural bottleneck (BN) features. To further solve the multi-factor (speaker timbre, speaking style and emotion) decoupling problem, we adopt the multi-label binary vector (MBV) and mutual information (MI) minimization to respectively discretize the extracted embeddings and disentangle these highly entangled factors in both Text2SE and SE2Wave modules. Moreover, we introduce a semi-supervised training strategy to leverage data from multiple speakers, including emotion-labeled data, style-labeled data, and unlabeled data. To better transfer the fine-grained expression from references to the target speaker in non-parallel transfer, we introduce a reference-candidate pool and propose an attention-based reference selection approach. Extensive experiments demonstrate the good design of our model.


翻译:本文旨在通过将其他发言者所录参考演讲的风格和情感从其他发言者所录参考演讲中传递的风格和情感,将目标发言者的演讲与理想的演讲风格和情感综合起来。我们用由文本到风格和情绪(Text2SE)模块组成的两阶段框架和由神经瓶颈(BN)特征连接的风格和情绪(SE2Wave)模块组成的风格和情绪到波(SE2Wave)模块解决这一具有挑战性的问题。为了进一步解决多因素(声音的触角、声音的风格和情感)脱钩问题,我们采用了多标签双向二向矢量和相互信息(MBV)的最小化,分别将提取的嵌入器分离并分解这些高度纠结的因素。此外,我们引入了半封闭式的培训战略,以利用多个发言者的数据,包括情感标签数据、风格标签数据和无标签数据。为了更好地将精细的表达式表达式从非平行传输中引用目标演讲者,我们引入了一个参考扫描式的组合,我们引入了一种参考扫描式的模型,并提议一个广泛的实验式的模型。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
14+阅读 · 2022年8月25日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员