Data-driven constitutive modeling is an emerging field in computational solid mechanics with the prospect of significantly relieving the computational costs of hierarchical computational methods. Traditionally, these surrogates have been trained using datasets which map strain inputs to stress outputs directly. Data-driven constitutive models for elastic and inelastic materials have commonly been developed based on artificial neural networks (ANNs), which recently enabled the incorporation of physical laws in the construction of these models. However, ANNs do not offer convergence guarantees and are reliant on user-specified parameters. In contrast to ANNs, Gaussian process regression (GPR) is based on nonparametric modeling principles as well as on fundamental statistical knowledge and hence allows for strict convergence guarantees. GPR however has the major disadvantage that it scales poorly as datasets get large. In this work we present a physics-informed data-driven constitutive modeling approach for isostropic and anisotropic materials based on probabilistic machine learning that can be used in the big data context. The trained GPR surrogates are able to respect physical principles such as material frame indifference, material symmetry, thermodynamic consistency, stress-free undeformed configuration, and the local balance of angular momentum. Furthermore, this paper presents the first sampling approach that directly generates space-filling points in the invariant space corresponding to bounded domain of the gradient deformation tensor. Overall, the presented approach is tested on synthetic data from isotropic and anisotropic constitutive laws and shows surprising accuracy even far beyond the limits of the training domain, indicating that the resulting surrogates can efficiently generalize as they incorporate knowledge about the underlying physics.


翻译:数据驱动的构建模型是计算固态机械的一个新兴领域,其前景是大幅降低等级计算方法的计算成本。传统上,这些代孕者是使用数据集培训的,这些数据集可以直接将投入排挤到压力产出中。数据驱动的弹性和弹性材料组成模型通常以人工神经网络为基础开发,最近,这些网络能够将这些模型的构建纳入物理法律之中。然而,ANNS并不提供趋同保证,而是依赖用户指定的参数。与ANNS相比,Gausian进程回归(GPR)依据的是非参数性结构模型原则以及基本统计知识,因此可以进行严格的趋同。但GPR的主要缺点是,随着数据设置的变大,该模型的缩和弹性通常以人工神经网络为基础,将物理数据驱动的构造模型方法纳入这些模型的构建中。 ANNNNP没有提供趋同保证,而是依赖用户指定的参数。 与ANNNS相比,GOS进程回归(GPR)基于非参数的立比性结构,因此能够尊重物理原理,例如,冷感动的内位数据采集、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感应、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感动、感力、感力、感力、感力、感力、感力、感动、感动、感动、感动、感动、感动、感动、感力、感力、感动、感动、感力、感力、感力、感力、感力、感力、感力、感力、感力、感力、感力、感力、感力、感力、感力、感动、

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员