In material science, models are derived to predict emergent material properties (e.g. elasticity, strength, conductivity) and their relations to processing conditions. A major drawback is the calibration of model parameters that depend on processing conditions. Currently, these parameters must be optimized to fit measured data since their relations to processing conditions (e.g. deformation temperature, strain rate) are not fully understood. We present a new approach that identifies the functional dependency of calibration parameters from processing conditions based on genetic programming. We propose two (explicit and implicit) methods to identify these dependencies and generate short interpretable expressions. The approach is used to extend a physics-based constitutive model for deformation processes. This constitutive model operates with internal material variables such as a dislocation density and contains a number of parameters, among them three calibration parameters. The derived expressions extend the constitutive model and replace the calibration parameters. Thus, interpolation between various processing parameters is enabled. Our results show that the implicit method is computationally more expensive than the explicit approach but also produces significantly better results.


翻译:在材料科学方面,为预测突发物质特性(例如弹性、强度、导电性)及其与处理条件的关系,将模型推导出各种模型,主要缺点是校准取决于加工条件的模型参数。目前,这些参数必须优化,以适应测量数据,因为它们与处理条件(例如变形温度、压力率)的关系不完全理解。我们提出了一个新办法,确定根据基因编程处理条件校准参数的功能依赖性。我们提出了两种(明确和隐含的)方法,以确定这些依赖性并产生可解释的简短表达方式。这个方法用来扩大基于物理的变形过程组成模型。这个构件模型使用内部材料变量,例如变形密度,并包含若干参数,其中包括三个校准参数。衍生的表达方式扩展了构件模型,取代了校准参数。因此,可以对各种处理参数进行相互调试算。我们的结果表明,隐含方法在计算上比明显的方法更昂贵,但也产生更好的结果。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
29+阅读 · 2021年8月2日
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
36+阅读 · 2021年4月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员