Dynamic networks, a.k.a. graph streams, consist of a set of vertices and a collection of timestamped interaction events (i.e., temporal edges) between vertices. Temporal motifs are defined as classes of (small) isomorphic induced subgraphs on graph streams, considering both edge ordering and duration. As with motifs in static networks, temporal motifs are the fundamental building blocks for temporal structures in dynamic networks. Several methods have been designed to count the occurrences of temporal motifs in graph streams, with recent work focusing on estimating the count under various sampling schemes along with concentration properties. However, little attention has been given to the problem of uncertainty quantification and the asymptotic statistical properties for such count estimators. In this work, we establish the consistency and the asymptotic normality of a certain Horvitz-Thompson type of estimator in an edge sampling framework for deterministic graph streams, which can be used to construct confidence intervals and conduct hypothesis testing for the temporal motif count under sampling. We also establish similar results under an analogous stochastic model. Our results are relevant to a wide range of applications in social, communication, biological, and brain networks, for tasks involving pattern discovery.
翻译:动态网络, a. k. a. a. 图形流, 由一组脊椎组成, 并收集了在脊椎间进行的时间戳互动事件( 即时间边缘 ) 。 时空运动点点被定义为图形流上的( 小) 定点线和持续时间的亚形( 小) 。 与静态网络中的模型一样, 时间点点点是动态网络中时间结构的基本构件。 已经设计了几种方法来计算图表流中时间点点点的发生率, 最近的工作重点是在各种抽样方案下估算与浓度属性的数值。 但是, 时间点点点点点点点点被定义为( 小) 等( 小) 的偏移诱导子子子子。 在这项工作中, 我们建立了某种 Horvitz- Thoompson 类的测算器的连贯性和无症状常态。 在确定性图表流的边缘取样框架中, 可以用来构建信任间隔, 并对取样中的时间模型数进行假设测试。 然而, 我们在抽样中, 也建立了一种类似的生物探索结果 。