Dynamic networks, a.k.a. graph streams, consist of a set of vertices and a collection of timestamped interaction events (i.e., temporal edges) between vertices. Temporal motifs are defined as classes of (small) isomorphic induced subgraphs on graph streams, considering both edge ordering and duration. As with motifs in static networks, temporal motifs are the fundamental building blocks for temporal structures in dynamic networks. Several methods have been designed to count the occurrences of temporal motifs in graph streams, with recent work focusing on estimating the count under various sampling schemes along with concentration properties. However, little attention has been given to the problem of uncertainty quantification and the asymptotic statistical properties for such count estimators. In this work, we establish the consistency and the asymptotic normality of a certain Horvitz-Thompson type of estimator in an edge sampling framework for deterministic graph streams, which can be used to construct confidence intervals and conduct hypothesis testing for the temporal motif count under sampling. We also establish similar results under an analogous stochastic model. Our results are relevant to a wide range of applications in social, communication, biological, and brain networks, for tasks involving pattern discovery.


翻译:动态网络, a. k. a. a. 图形流, 由一组脊椎组成, 并收集了在脊椎间进行的时间戳互动事件( 即时间边缘 ) 。 时空运动点点被定义为图形流上的( 小) 定点线和持续时间的亚形( 小) 。 与静态网络中的模型一样, 时间点点点是动态网络中时间结构的基本构件。 已经设计了几种方法来计算图表流中时间点点点的发生率, 最近的工作重点是在各种抽样方案下估算与浓度属性的数值。 但是, 时间点点点点点点点点被定义为( 小) 等( 小) 的偏移诱导子子子子。 在这项工作中, 我们建立了某种 Horvitz- Thoompson 类的测算器的连贯性和无症状常态。 在确定性图表流的边缘取样框架中, 可以用来构建信任间隔, 并对取样中的时间模型数进行假设测试。 然而, 我们在抽样中, 也建立了一种类似的生物探索结果 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员