This paper provides a recipe for deriving calculable approximation errors of mean-field models in heavy-traffic with the focus on the well-known load balancing algorithm -- power-of-two-choices (Po2). The recipe combines Stein's method for linearized mean-field models and State Space Concentration (SSC) based on geometric tail bounds. In particular, we divide the state space into two regions, a neighborhood near the mean-field equilibrium and the complement of that. We first use a tail bound to show that the steady-state probability being outside the neighborhood is small. Then, we use a linearized mean-field model and Stein's method to characterize the generator difference, which provides the dominant term of the approximation error. From the dominant term, we are able to obtain an asymptotically-tight bound and a nonasymptotic upper bound, both are calculable bounds, not order-wise scaling results like most results in the literature. Finally, we compared the theoretical bounds with numerical evaluations to show the effectiveness of our results. We note that the simulation results show that both bounds are valid even for small size systems such as a system with only ten servers.


翻译:本文为计算重贸易中中平均场模型的可计算近似误差提供了一种配方,其重点是众所周知的负负平衡算法 -- -- 双选动力(Po2),配方结合了Stein对线性平均场模型和国家空间集中(SSC)基于几何尾线的计算法。特别是,我们把国家空间分成两个区域,一个靠近中场平衡的邻区,一个补充点。我们首先用尾盘来显示在邻区外的稳定状态概率很小。然后,我们用线性平均场模型和Stein的方法来描述发电机差异,这提供了近似差的主要术语。从占支配地位的术语来看,我们可以获得一个无线性约束的和无线的上层,两者都是可计算界限,而不是像文献中的大多数结果那样有秩序的缩放结果。最后,我们用数字评价的理论界限比较了我们的结果。我们注意到,模拟结果显示,两个边框都只对小系统有效,只有小号服务器。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员