The massive upsurge in computational and storage has driven the local data and machine learning applications to the cloud environment. The owners may not fully trust the cloud environment as it is managed by third parties. However, maintaining privacy while sharing data and the classifier with several stakeholders is a critical challenge. This paper proposes a novel model based on differential privacy and machine learning approaches that enable multiple owners to share their data for utilization and the classifier to render classification services for users in the cloud environment. To process owners data and classifier, the model specifies a communication protocol among various untrustworthy parties. The proposed model also provides a robust mechanism to preserve the privacy of data and the classifier. The experiments are conducted for a Naive Bayes classifier over numerous datasets to compute the proposed model efficiency. The achieved results demonstrate that the proposed model has high accuracy, precision, recall, and F1-score up to 94%, 95%, 94%, and 94%, and improvement up to 16.95%, 20.16%, 16.95%, and 23.33%, respectively, compared with state-of-the-art works.


翻译:计算和存储的大规模激增将本地数据和机器学习应用推向云层环境。 所有者可能并不完全信任云层环境,因为它由第三方管理。 但是,在与多个利益攸关方共享数据和分类器的同时维护隐私,与多个利益攸关方共享数据和分类器是一项关键挑战。本文件提出了一个基于不同隐私和机器学习方法的新模式,使多个所有者能够共享数据以供使用,并使分类器能够为云层环境中的用户提供分类服务。对于处理所有者数据和分类器,模型为各种不值得信任的当事方规定了通信协议。拟议模式还提供了一个保护数据和分类器隐私的强有力机制。为计算拟议模型效率,对许多数据集进行虚拟贝耶斯分类器的实验。取得的成果表明,拟议模型的高度精度、精确度、回溯和F1分数高达94%、95%、94%和94%,并分别改进到16.95%、20.16%、16.95%和23.33%,与最新工艺相比,改进幅度分别为16.95%、20.16%、16.95%和23.33%。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年3月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员