We present a super-resolution model for an advection-diffusion process with limited information. While most of the super-resolution models assume high-resolution (HR) ground-truth data in the training, in many cases such HR dataset is not readily accessible. Here, we show that a Recurrent Convolutional Network trained with physics-based regularizations is able to reconstruct the HR information without having the HR ground-truth data. Moreover, considering the ill-posed nature of a super-resolution problem, we employ the Recurrent Wasserstein Autoencoder to model the uncertainty.
翻译:我们为平流扩散进程提出了一个超分辨率模型,信息有限。 虽然大多数超分辨率模型在培训中假定高分辨率(HR)地面真实数据,但在许多情况下,这种HR数据集不容易获得。 在这里,我们表明受过物理学规范化训练的经常性革命网络能够在没有HR地面真实数据的情况下重建HR信息。 此外,考虑到超分辨率问题的错误性质,我们使用常任瓦塞斯坦自动编码器来模拟不确定性。