The distribution of energy dose from Lu$^{177}$ radiotherapy can be estimated by convolving an image of a time-integrated activity distribution with a dose voxel kernel (DVK) consisting of different types of tissues. This fast and inacurate approximation is inappropriate for personalized dosimetry as it neglects tissue heterogenity. The latter can be calculated using different imaging techniques such as CT and SPECT combined with a time consuming monte-carlo simulation. The aim of this study is, for the first time, an estimation of DVKs from CT-derived density kernels (DK) via deep learning in convolutional neural networks (CNNs). The proposed CNN achieved, on the test set, a mean intersection over union (IOU) of $= 0.86$ after $308$ epochs and a corresponding mean squared error (MSE) $= 1.24 \cdot 10^{-4}$. This generalization ability shows that the trained CNN can indeed learn the difficult transfer function from DK to DVK. Future work will evaluate DVKs estimated by CNNs with full monte-carlo simulations of a whole body CT to predict patient specific voxel dose maps.
翻译:Lu$177}美元放射疗法的能量剂量分布,可以通过使用由不同种类组织组成的剂量Voxel内核(DVK)的一次性集成活动分布图像来估计。这种快速和不精确近似对于个性化剂量测量不合适,因为它忽略了组织差异性。后者可以使用诸如CT和SPECT等不同成像技术以及耗时的月光模拟来计算。本研究的目的是首次通过在革命性神经网络(CNNs)中深入学习,对CT衍生密度内核(DK)的DVK进行估计。拟议的CNN在测试集成中实现了平均交错(IOU)0.86美元,在308美元环球和相应的平均正方差(MSE)=1.24美元\cdot 10 ⁇ -4}之后,后者的计算结果是:经过培训的CNNCN确实能够从CT到DK到DVK的密度内核内核内核内核内核内核内核内核内核内核的难以转换函数。未来工作将用CNNMS的全度图像模拟评估DVK的病人的全成象。