Most low-density parity-check (LDPC) code constructions are considered over finite fields. In this work, we focus on regular LDPC codes over integer residue rings and analyze their performance with respect to the Lee metric. Their error-correction performance is studied over two channel models, in the Lee metric. The first channel model is a discrete memoryless channel, whereas in the second channel model an error vector is drawn uniformly at random from all vectors of a fixed Lee weight. It is known that the two channel laws coincide in the asymptotic regime, meaning that their marginal distributions match. For both channel models, we derive upper bounds on the block error probability in terms of a random coding union bound as well as sphere packing bounds that make use of the marginal distribution of the considered channels. We estimate the decoding error probability of regular LDPC code ensembles over the channels using the marginal distribution and determining the expected Lee weight distribution of a random LDPC code over a finite integer ring. By means of density evolution and finite-length simulations, we estimate the error-correction performance of selected LDPC code ensembles under belief propagation decoding and a low-complexity symbol message passing decoding algorithm and compare the performances.
翻译:暂无翻译